您当前的位置:首页 >> 头条 >  
圆的切线定理_切线定理-视讯
来源: 互联网      时间:2023-03-01 20:13:03


(相关资料图)

有关圆的切线定理_切线定理这方面的知识,估计很多人不是太了解,今天就给大家详细的介绍一下关于圆的切线定理_切线定理的相关内容。

1、弦切线定理目录英文名称切线的判定和性质切线的判定定理切线的性质定理切线长定理弦切角定理切割线定理弦切角概念英文名称 切线的判定和性质 切线的判定定理 切线的性质定理切线长定理 弦切角定理 切割线定理 弦切角概念展开 编辑本段英文名称 弦切线定理 Tangent chord theorem编辑本段切线的判定和性质切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 几何语言: ∵l ⊥OA,点A在⊙O上 ∴直线l是⊙O的切线(切线判定定理)切线的性质定理 圆的切线垂直于经过切点半径 几何语言: ∵OA是⊙O的半径,直线l切⊙O于点A ∴l ⊥OA(切线性质定理) 推论1 经过圆心且垂直于切线的直径必经过切点 推论2 经过切点且垂直于切线的直线必经过圆心 编辑本段切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 几何语言: ∵直线PB、PD切⊙O于A、C两点 ∴PA=PC,∠APO=∠CPO(切线长定理)编辑本段弦切角定理 弦切角等于它所夹的弧对的圆周角 几何语言:∵∠BCN所夹的是,∠A所对的是 ∴∠BCN=∠A 推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 几何语言:∵∠BCN所夹的是 ,∠ACM所对的是 , = ∴∠BCN=∠ACM编辑本段切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

2、 推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

3、 编辑本段弦切角概念 顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.它是继圆心角、圆周角之后第三种与圆有关的角.这种角必须满足三个条件: (1)顶点在圆上,即角的顶点是圆的一条切线的切点; (2)角的一边和圆相交,即角的一边是过切点的一条弦所在的射线; (3)角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线. 它们是判断一个角是否为弦切角的标准,三者缺一不可,比如下图中 均不是弦切角. (4)弦切角可以认为是圆周角的一个特例,即圆周角的一边绕顶点旋转到与圆相切时所成的角.正因为如此,弦切角具有与圆周角类似的性质.。

上一篇:

下一篇:

X 关闭

class="ad_desc">广告

X 关闭